Journal of Organometallic Chemistry, 86 (1975) 253–256 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## ON THE VIBRATIONAL ASSIGNMENTS OF FERROCENE, RUTHENOCENE AND OSMOCENE

B.V. LOKSHIN, V.T. ALEKSANIAN and E.B. RUSACH Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.) (Received September 9th, 1974)

## Summary

The solution Raman spectra of ferrocene, ruthenocene and osmocene have been reinvestigated. Polarization measurements in general support previous assignments for  $Cp_2Fe$  (Cp = cyclopentadienyl), but the weak line at 1186  $cm^{-1}$  was found to be polarized and a new assignment for this vibration is discussed. An assignment of the skeletal modes for  $Cp_2Os$  is made and patterns in the frequencies and force constants in the series  $Cp_2M$  (M = Fe, Ru, Os) are discussed.

The vibrational spectra of ferrocene ( $Cp_2Fe$ ), ruthenocene ( $Cp_2Ru$ ) and osmocene ( $Cp_2Os$ ) (Cp = cyclopentadienyl) have been discussed repeatedly in the literature [1-16]. The IR spectra of  $Cp_2Fe$  as a gas, solution and solid at ambient and low temperatures have been studied, as have the deutero derivative in the IR and far IR regions, and the Raman spectra of  $Cp_2Fe$  and  $Cp_2Fe-d_{10}$ . An assignment of the ring and skeletal modes has been given. The first Raman spectrum of a metallocene to be measured was that of  $Cp_2Fe$  [1], but no polarization measurements were made in this study because the lines were too weak. The results of such measurements have since been given [16] but only for the strong lines. The Raman spectra of a solution of  $Cp_2Fe$  has been obtained [5], but polarization data were not given and, therefore, the assignment of some weak Raman lines may be ambiguous.

In the present study the solution Raman spectra of Cp<sub>2</sub>Fe are reinvestigated and our data in general support previous assignments. All Raman lines, assigned to  $A_{1g}$  modes, are polarized. In particular, of two weak lines at 812 and 834 cm<sup>-1</sup> which are assigned to the out-of-plane CH modes of the Cp ring the former was found polarized in CH<sub>3</sub>I solution and the latter depolarized (Fig. 1), but unexpectedly the weak line at 1186 cm<sup>-1</sup>, which is usually assigned to an in-plane CH bending mode  $\nu_{24}(E_{2g})$ , was found to be polarized in CCl<sub>4</sub> solution (Fig. 1). Earlier we found that the corresponding line of the Cp



Fig. 1. Raman spectra of  $Cp_2Fe$  in the 800 cm<sup>-1</sup> (CH<sub>3</sub>I solution) and 1200 cm<sup>-1</sup> (CCl<sub>4</sub> solution) regions. I, polarized. L, non-polarized.

ring in cyclopentadienylmanganese tricarbonyl is also polarized [19]. This observation is at variance with the previous assignment and the mode is probably the overtone of  $\nu_{28}$  (out-of-plane Cp mode at about 600 cm<sup>-1</sup>). In this case the overtone symmetry is  $2 \times E_{2g} = A_{1g} + A_{2g} + E_{1g}$ . This line may be polarized if the principal contribution to the intensity is made by the  $A_{1g}$  component. For instance in the Raman spectrum of Cp<sub>2</sub>Ru this line is depolarized [9], but this may be due to different contributions of  $A_{1g}$  and  $E_{1g}$  components to this line. We were unable to measure the polarization of this line for Cp<sub>2</sub>Os because of its low intensity and the low solubility of the compound.

Of special interest for Cp<sub>2</sub>M compounds are the skeletal modes. Symmetric  $(A_{1g}, \text{Raman})$  and asymmetric  $(A_{2g}, \text{IR})$  stretching modes Cp–M, and symmetric and asymmetric ring tilts ( $E_{2g}$ , Raman, and  $E_{1u}$ , IR respectively) and CpMCp bending modes are expected in the region below 500 cm<sup>-1</sup> for sandwich complexes. Polarization data have been obtained for the Raman active modes of  $Cp_2Fe$  and  $Cp_2Ru$  and the assignment is unambiguous. For  $Cp_2Os$  Raman data were only available for the solid state [14]. We have now obtained the polarized Raman spectrum of  $Cp_2Os$  in  $CH_3I$  solution, and we assigned the strong polarized line at 356 cm<sup>-1</sup> to  $v_4(A_{1g})$  and the line at 415 cm<sup>-1</sup> to  $v_{1b}(E_{1g})$ . Thus a systematic increase in  $v_4$  takes place in the series  $Cp_2Fe < Cp_2Ru < Cp_2Os$ . This regularity can only be explained by an increase in the force constant of the Cp-M bond, because the frequency of  $v_4(A_{10})$  does not depend on the mass of the metal atom. It has been shown by crystal splitting in the low-temperature IR spectra of Cp<sub>2</sub>Fe that the band at 478 cm<sup>-1</sup> may be assigned to  $v_{11}(A_{2u})$  and that at 492 cm<sup>-1</sup> to  $\nu_{21}(E_{1u})$  (ring tilt) [14]. For Cp<sub>2</sub>Ru and Cp<sub>2</sub>Os, the weak bands at 530 cm<sup>-1</sup> observed only for the solids were earlier assigned to  $\nu_{21}(E_{10})[4, 14]$ , but the spectra below 400 cm<sup>-1</sup> were not investigated and the strong IR bands at 380 cm<sup>-1</sup> (Cp<sub>2</sub>Ru) and 353 cm<sup>-1</sup> (Cp<sub>2</sub>Os) were therefore not observed. However, we and other authors [9, 10] observed no bands in the 530 cm<sup>-1</sup> region for  $Cp_2Ru$  and  $Cp_2Os$  either in the solid state at room temperature (KBr pellets, Nujol) or in solution, and neither was splitting of the skeletal modes of  $Cp_2Ru$ and  $Cp_2Os$  in the IR spectra of the solids at low temperatures observed [9, 10]. On the basis of model calculations for  $Cp_2Ru$  [9] the band at 446 cm<sup>-1</sup> is assigned to  $v_{11}$  and that at 380 cm<sup>-1</sup> to  $v_{21}$ . Thus a change in the order found for  $Cp_2$ Fe ( $v_{21} > v_{11}$ ) is suggested. For the in-phase modes of all three complexes the stretching mode  $v_4$  is always at a lower frequency than the ring tilt  $v_{16}$ . On

| M  | v4(A1g) | $v_{11}(A_{2u})$ | $v_{16}(E_{1g})$ | $\nu_{21}(E_{1u})$ | $v_{22}(E_{1u})$ | <i>К</i> (М—Ср) | н    |
|----|---------|------------------|------------------|--------------------|------------------|-----------------|------|
| Fe | 303     | 478              | 388              | 492                | 170              | 3.04            | 0.48 |
| Ru | 329     | 385              | 402              | 446                | 162<br>172       | 3.33            | 0.85 |
| Os | 356     | 353              | 415              | 428                | 160<br>166       | 3.83            | 0.98 |

TABLE 1 SKELETAL MODES (cm<sup>-1</sup>) AND FORCE CONSTANTS (mdyn/Å) FOR Cp<sub>2</sub>M

the other hand such an assumption for Cp<sub>2</sub>Ru would signify that the in-phase tilt has a higher frequency than the out-of-phase one. This observation caused a change of assignment to  $v_{11}$  380 cm<sup>-1</sup> and  $v_{21}$  446 cm<sup>-1</sup> [10]. We are of the opinion that such an assignment is more likely and the IR spectra of Cp<sub>2</sub>Ru at high pressure also seems to agree with this assignment [15]. Assuming that for Cp<sub>2</sub>Os the order must not be changed we assign the band at 353 cm<sup>-1</sup> to  $v_{11}$  and that at 430 cm<sup>-1</sup> to  $v_{21}$ . Thus, in contradiction to  $v_4$ , the  $v_{11}$  frequencies decrease in the series Cp<sub>2</sub>Fe > Cp<sub>2</sub>Ru > Cp<sub>2</sub>Os, a fact which may be explained by the increase in mass of the metal atom. A result of this is that for Cp<sub>2</sub>Os the frequencies  $v_4$  and  $v_{11}$  are virtually coincident (strong IR band 353 cm<sup>-1</sup> and polarized Raman line 356 cm<sup>-1</sup>). Taking into consideration that the mutual exclusion rule works well for Cp<sub>2</sub>Ru and Cp<sub>2</sub>Fe, IR and Raman bands occuring at the same frequency must be assigned to the different modes.

The force constants, calculated using a simple three mass model, are given in Table 1. In accordance with the  $\nu_4$  frequency order they increase in the series Cp<sub>2</sub>Fe < Cp<sub>2</sub>Ru < Cp<sub>2</sub>Os.

The behaviour of the ring tilt vibrations is similar to that of the metal—ring stretching modes: the frequency of the in-phase mode increases and that for the out-of-phase mode decreases with increasing atomic weight of the metal atom. The CpMCp bending modes for all compounds in the solid state are located in approximately the same region (160-170 cm<sup>-1</sup>) and are split because of crystal effects.

## Acknowledgements

The authors are grateful to Drs. A.Z. Rubejov and L.I. Denisovich for supplying the compounds for investigation.

## References

- 1 E.R. Lippincott and R.D. Nelson, Spectrochim. Acta, 10 (1958) 307.
- 2 L.S. Mayantz, B.V. Lokshin and G.B. Shaltuper, Opt. Spektrosk., 13 (1962) 317.
- 3 W.K. Winter, B. Curnutte and S.E. Whitcomb, Spectrochim. Acta, 12 (1959) 1085.
- 4 H.P. Fntz, Advan. Organometal. Chem., 1 (1964) 239.
- 5 T.V. Long and F.R. Huege, Chem. Commun., 20 (1968) 1239.
- 6 D. Hartley and M.J. Ware, J. Chem. Soc. A, (1969) 138.
- 7 J.S. Bodenheimer, E. Loewenthal and W. Low, Chem. Phys. Lett., 3 (1969) 715-
- 8 J.S. Bodenheimer, Chem. Phys. Lett., 6 (1970) 519.
- 9 D.M. Adams and W.S. Fernando, J. Chem. Soc. Dalton Trans., (1972) 2507.
- 10 J.S. Bodenheimer and W. Low, Spectrochim. Acta, Part A, (1973) 1733.

- 11 R.T. Bailey, Spectrochim. Acta, Part A, 27 (1971) 199.
- 12 LJ. Hyams, Spectrochum, Acta, Fart A, 29 (1973) 839.
- 13 LJ. Hyams, Chem. Phys. Lett., 18 (1973) 399.
- 14 J.M. Kimelfeld, E.M. Smirnova, V.T. Aleksanian and A.A. Lubovich, Zh. Strukt. Khim., 14 (1973) 826.
- 15 K. Nakamoto, C. Udovich, J.K. Ferraro and A. Quattrochi, Appl. Spectrosc., 24 (1970) 606-
- 16 A. Sado, R. West, H.P. Fritz and L. Schäfer, Spectrochim. Acta, 22 (1966) 509.
- 17 C. Postmus, K. Nakamoto and J.R. Ferraro, Inorg. Chem., 6 (1967) 2194.
- 18 J.R. Allkins, R.J. Gbremski, C.W. Brown and E.R. Lippincott, Inorg. Chem., 8 (1969) 1450-
- B.V. Lokshin, V.N. Setkina, E.B. Rusach and N.V. Pyshnograeva, J. Organometal. Chem., 77 (1974)
  69.